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Abstract. In general, the rigid-contact assumption has been used to estimate the frictional moment between two
bodies in contact. In a multi-body connection, two types of passive interconnection are considered in this paper,
namely pin joint and spherical-ball joint. The joints are assumed to be passive at the localized configuration space
of the multi-body systems and are assumed to be actuated remotely. The traditional approach for modelling such
frictional contact does not consider the elastic deformation of joints. Two approximate models are presented for
both revolute pin joints and spherical-socket ball joints. The proposed models offer a more accurate estimation of
the Coulomb frictional moment. The new models offer a compact solution which can be easily extended to other
geometrical multi-body contact configurations with various degrees of clearance. The proposed models can be
used in the dynamic modelling and control of multi-body systems in frictional contact.
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1. Introduction

In general, all linkaged mechanisms and multi-body systems consist of joints and linkages.
Rotary joints are the most commonly used type of joints. Rotary joints consist of two general
categories: (a) revolute joints (providing one Degree of Freedom (DOF)), and (b) spherical
joints (providing up to three DOF). Specifically, the revolute pin joints and spherical socket-
ball joints are used when the requirements include: (a) relatively high radial loads at the joints,
(b) very high stiffness of the joints to reduce the vibrational tendencies of the system, and (c)
simple and compact joints design. However, these two types of joints have disadvantages
(when compared to low-friction bearings with intermediate rolling elements) such as: (a)
lower operational speed, (b) relatively shorter service life, and (c) higher friction. For mod-
elling and analysis of such joints, it is required to estimate/predict the frictional moment in
these joints. The motivation for the need to accuratly model the frictional moments can be
further explained using the following examples:

(I) In the static cases (e.g. truss-cell systems [1], or endoscopic multi-jointed devices [2–
3]), it is desired to predict/estimate the maximum frictional moment capacity of the locked
joints under different loading conditions.

(II) In the dynamic cases of multi-body systems, the frictional moment at each joint is
a contributing factor in the dynamic model between bodies. For accurate modeling of the
system, it is essential to model frictional moment with the required accuracy [4–6].

(III) Another specific example (with both static and dynamic applications) is the flexible
stem in endoscopic tools which consist of several spherical joints (Figure 1). This design
allows the tools tip to have two degrees of freedom. Each joint is actuated by tendon-like
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Figure 1. The flexible stem of an endoscopic tool. Figure 2. The rigid joint under load F .

wires at the periphery. The unique feature of this design is that these joints are held together,
moved, and locked by changing the tension in the tendons. In the static case, when the joints
are locked, the tension in the wires should exceed some minimum limit in order to prevent the
joints from any slipping. However, in the dynamic case of moving joints, the tension must be
reduced in some of the wires to allow the joints to rotate in the desired direction. In both of
these cases it is important to estimate accurately the frictional moments of joints which are
controlled by the tension of tendons.

As mentioned above, there are several papers related to experimental applications/studies
of Coulomb frictional moment of joints [2], [6], [1], as well as general theoretical studies [4–
5]. Reference [12, Section 4.1, Chapter 7] is a good reference book on general modelling and
solution of various contact-mechanics problems. In all of these works, it is assumed that joints
are absolutely rigid, and the contact is modeled as a point contact in the spherical socket-ball
joints, and a line contact in revolute ones, where all the frictional force is concentrated on.
This has led to simplified models for predicting the frictional moment. Various approaches
have been also followed to model approximately the Coulomb and stress model for Hertzian
contact with compliant model approximation. For example, Lukowski et al. [7] analyzes the
contact stresses and contact area of mating disks in frictional transmission. Approximate Hertz
formulations are adopted to determine the maximum contact stresses under elastic deforma-
tion. Another approach for such approximations is given in [8]. Here a simple method is
presented for analysis of contact stresses and deformation between the bearing balls, screw
and nut of the screw mechanism. Simplified Hertzian contact solutions are obtained using
curvature information. Similar approximations to the contact model between elastic bodies
can be found in [9–11].

However, in general there is a contact area caused by the elastic deformation of the joint
that the Coulomb friction is acted on instead of the point contact. In this paper, contacts in the
joints are considered elastic and by use of the elliptic load distribution over the contact sur-
faces, approximate models are developed which can predict/estimate the frictional moments
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with better accuracy. Finally, mathematical models for estimating the range of clearance in
the joints that ensures full contact and maximum stiffness of the pin and socket-ball joints are
presented.

2. Preliminary analysis

A simple derivation of the current model is demonstrated here by the assumption of absolute
rigidity of the joint with a point contact between its surfaces (Figure 2, gives a cross-sectional
view for both cases). The force F is the resultant external load acting on the joint (Figure 2),
and the basic equilibrium of forces and moments for both cases are:∑

Fx = −N sin θ0 + µN cos θ0 = 0,∑
Fy = N cos θ0 + µN sin θ0 = F,∑
Mo = µNR = F l,

where N = the reaction force at the contact point, l = the distance of force F to the center of
joint, θ0 = the equilibrium angle of contact point, µ = the coefficient of friction between the
two surfaces of joint.

The first equation leads to: tan θ0 = µ, and solving the other two equations provides:
N = F/

√
1 + µ2, and:

l

R
= µ√

1 + µ2
. (1)

Using the above equations, we can obtain the frictional moment acting on the joint (M =
µNR) as:

M = F × R
µ√

1 + µ2
, (2)

and for small values of µ (e.g., µ < 0·3 ), the value of
√

1 + µ2 can be approximated to be
equal to 1; Equations (1) and (2) reduce to: l/R = µ, and M = µFR.

Equation (2) is used extensively in the literature ([1–2], [4–6]) to predict the frictional
moment in revolute or spherical joints. However, the above simplified analysis does not con-
sider the elasticity of the joints. The following sections take into account the effects of elastic
deformation and stress distribution over the contact area in revolute pin joints, and spherical
socket-ball joints, in order to estimate the Coulomb frictional moment more realistically, and
with higher accuracy.

3. Revolute pin joints

This section first presents the study of the stress distribution on the contact area of revolute
joint; then, by applying the Coulomb friction law at the contact area, the equilibrium analysis
is carried out.
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Figure 3. The stress distribution between two cylindri-
cal surfaces.

Figure 4. The revolute pin joint under load F .

3.1. THE RADIAL STRESS DISTRIBUTION

The radial contact stress σr between the two cylindrical surfaces of radiuses R and R′ due to
deformation are known [13, pp. 151–160], [15, pp. 81–88] to have an elliptical distribution
expressed as follows:

σr = σmax

√
1 − x2

a2
. (3)

When the materials of the two surfaces are the same, with the elastic modulus E and Poisson
ratio ν ≈ 0·3 (true for most alloys), the maximum radial stress σmax at the center line the of
contact region is:

σmax = 0·418

[
PE

b

(
R′ − R

RR′

)]1/2

, (4)

and the width of the contact area (= 2a, Figure 3) can be obtained by:

a = R sin α = 1·25[ P

Eb

R′R
R′ − R

]1/2, (5)

where: b = The axial width of the revolute joint (Figure 3), P = F cos θ0 = The radial
component of load F , α = Half of the maximum angular contact between the two cylinders
(Figure 4).

With different elastic moduli of E1, E2 and Poisson ratios ν1, ν2, then E in the above
equation is replaced by 1·82E1E2/((1 − ν2

2)E1 + (1 − ν2
1)E2), [15].

We used Equation (3) for obtaining the radial stress distribution. It is assumed that the
Coulomb frictional law can be used for obtaining the tangential stress distribution between
two cylindrical surfaces of the joint.
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3.2. EQUILIBRIUM ANALYSIS

Given the stress distributions on cylindrical surfaces, it is possible to write down equilibrium
equations of forces and moments. The components of forces acting on an infinitesimal area of
contact bRdθ (Figure 4) are:∑ 
dF = σrbR dθ[(µ cos θ − sin θ)î + (cos θ + µ sin θ)ĵ], (6)

where σr = σmax

√
1 − R2

a2 sin2(θ − θ0) is obtained from Equation (3).
By integration over the contact area, equilibrium equations of forces along X,Y, and

moment around Z axis (Figure 4) can be written as:

∑
Fx =

∫ θ0+α

θ0−α

∑ 
dF · î

=
∫ θ0+α

θ0−α

bRσmax(µ cos θ − sin θ)

√
1 − R2

a2
sin2(θ − θ0) dθ = 0, (7)

∑
Fy =

∫ θ0+α

θ0−α

∑ 
dF · ĵ

=
∫ θ0+α

θ0−α

bRσmax(µ sin θ + cos θ)

√
1 − R2

a2
sin2(θ − θ0) dθ = F, (8)

∑
Mo =

∫ θ0+α

θ0−α

[ 
R ×
∑ 
dF

]
· k̂

=
∫ θ0+α

θ0−α

µbR2σmax

√
1 − R2

a2
sin2(θ − θ0) dθ = F l, (9)

where: θ0 = the angle where maximum radial stress occurs (Figure 4). 
R = R(sin θî−cos θĵ),
l = the distance between force F and y axis (Figure 4).

By setting a = R sin α and u = θ − θ0, Equations (7) and (8) can be solved and we have:

tan θ0 = µ, (10)

F = πbR

2
σmax(1 + µ2)1/2 sin α. (11)

On the other hand, Equation (9) can not be solved analytically, since it is an elliptic integral.
There are various approaches of finding the solution for (9).

I) Numerical integration: This method could be applied by means of numerical inte-
gration algorithms to each individual case; however, it is computationally expensive, and
time-consuming. This is true when the solution is needed for dynamic cases (such as the
endoscopic flexible extenders), where load and other parameters are constantly changing.

II) Tabulated values: There are tables for different kinds of elliptic integrals that could be
used ([14, pp. 299–301]) to solve Equation (9). Although impractical, they are used in this
paper (Table 1) to verify the results of the next method (Expansion Series) and, based on that,
develop a convenient approximate solution.
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III) Expansion series: Approximation is possible by obtaining a series expansion of Equa-
tion (9). For this purpose first let K = R/a and u = θ−θ0 render Equation (9) in the following
form:

F l

µbR2σmax
=
∫ α

−α

√
1 − K2 sin u2 du = 2E(α,K), (12)

where E(α,K) is defined as the normal elliptic integral of the second kind [14] that could be
represented by an expansion series if K < 1. However, in our case K ≥ 1 since: K = R/a,
and a = R sin α, so K = 1/ sin α, since 1 ≥ sin α ≥ 0 which results in: K ≥ 1. Therefore,
it is necessary to use a Reciprocal Modulus Transformation [14] of E(α,K) as E(α,K) =
[E(β, k)−(1−k2)F (β, k)]/k, where k = 1/K = sin α, and β = sin−1(K sin α) = sin−1(1) =
π/2. Also F (β, k) is the normal elliptic integral of the first kind. Then Equation (12) is
transformed to:

F l

µbR2σmax
= 2E(α,K) = 2[E(π/2, k) − (1 − k2)F (π/2, k)]/k. (13)

Now by substituting (11) in (13), we can further reduce the expansion as:

l

R
= 4E(α,K)

π sin α

µ√
1 + µ2

= Cα

µ√
1 + µ2

, (14)

where

Cα = 4E(α,K)

π sin α
= 4

π
[E(π/2, k) − (1 − k2)F (π/2, k)]/k2. (15)

We can use the expansion series of E and F [14] to obtain an expansion series for Cα by
applying them to Equation (15) as follows:

E(π/2, k) = π
2

[
1 − 1

4k
2 − 3

64k
4 − 5

256k
6 − 175

16384k
8 − · · ·] ,

F (π/2, k) = π
2

[
1 + 1

4k
2 + 9

64k
4 + 25

256k
6 + 1225

16384k
8 + · · ·] ,

Cα = 1 + 1
8k

2 + 3
64k

4 + 25
1024k

6 + 245
16384k

8 + · · · .

(16)

On the other hand, the tabulated values of E and F [14] are used, and the following values
of Cα based on Equation (15) are calculated (Table 1) and plotted vs. α in Figure 5 (shown by
small circles).

Comparing the results of these two approaches shows that the series (16) converges to
the final values of Cα (Table 1) very slowly as the number of elements in the series are
increased. For example, even the summation of the first five elements of the series results
in a 5% deviation for large values of α (as shown by the dashed line A in Figure 5) from the
tabulated values.

IV) Curve fitting : By curve-fitting techniques (to the data points of Cα from Table 1) it
is possible to obtain functions with better accuracy compared to the results of the expansion
series with a limited number of elements. For example, by knowing the type of polynomial
obtained from previous section (i.e., Equation (16)), we could solve the function Cα = 1 +
Ak2 + Bk4 + Ck6 + Dk8 by a least-squares method for the tabulated values of Cα (from
Table 1) to obtain the coefficients A,B,C, and D. This results in:

Cα = 1 + 0·0477k2 + 0·5744k4 − 1·051k6 + 0·6982k8. (17)
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Table 1. The values of Cα for different contact angles α .

α k = sin α E(π/2, k) F (π/2, k) 2E(α, K) Cα

0 0·0 1·57080 1·570796 0·0000 1·000

5 0·087 1·567809 1·573792 0·1370 1·001

15 0·259 1·544150 1·598142 0·4100 1·008

30 0·500 1·467462 1·685750 0·8126 1·035

45 0·707 1·350644 1·854075 1·1981 1·079

60 0·866 1·211056 2·156516 1·5517 1·141

75 0·966 1·076405 2·768063 1·8448 1·216

90 1·000 1·00000 ∞ 2·0000 1·273

0 20 40 60 80
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Figure 5. Cα vs. α for revolute pin joints. Figure 6. l/R vs. µ for revolute pin joints.

The above equation has less than 1% deviation from the values of Cα over the whole range
of α (shown by the solid line B in Figure 5). This is a reasonable level of accuracy for most
practical applications, but other optimal curve-fitting techniques might even achieve higher
accuracies.

Now, by having the equation of Cα, we can write the final frictional moment of the revolute
pin joint as:

M = F × l

= F × R(1 + 0·0477 sin2 α + 0·5744 sin4 α − 1·051 sin6 α +
+ 0·6982 sin8 α)

µ√
1 + µ2

, (18)
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where α can be obtained from (5) and (10) as:

α = sin−1



(

2·31F

Eb
√

1 + µ2
.
R′/R
R′ − R

)1/2

 .

From the above equation it is evident that the value of M for some specific force F depends
only on the parameter l. So the ratio l/R (= M/FR) can be considered as a dimensionless
index that represents the maximum moment capacity of the joint, regardless of the revolute-
joints dimensions.

The quantity l/R from Equation (14) is plotted for different values of µ and α in Figure 6.
In this plot the curve corresponding to α = 0 represents the rigid-joint model, since, for α = 0:
Cα = 1, and Equation (14) converts to Equation (1), and when it is compared to the full contact
case (where α = 90◦), Equation (1) has a deviation of 21% from Equation (18). This could
result in the same amount of error, if Equation (1) is used for a full-contact case. Actually,
the straight-line approximation l/R = µ provides a much better approximation for near full-
contact conditions than Equation (1). However, there is no need for approximation anymore,
as the new model (18) provides an accurate estimate of M for any condition of friction and
contact angle.

4. Spherical socket-ball joints

In this section, a similar procedure as that of Section 3 is applied to spherical socket-ball joints.
First, the stress distribution on the contact area of a spherical joint is studied; then, through
application of Coulomb’s friction law at the contact area, the equilibrium analysis is carried
out.

4.1. THE RADIAL STRESS DISTRIBUTION

Similar to the cylindrical case (Equation (3)), the radial contact stress σr between the two
spherical surfaces of radii R and R′ due to deformation are known ([13], [15]) to be an
elliptical distribution as well. However, the elliptic distribution is along two axes (i.e., X and
Y axis) :

σr = σmax

√
1 − x2

a2
− y2

a2
. (19)

When the materials of the two surfaces are the same, with the elastic modulus E and
Poisson ratio ν ≈ 0·3 (true for most alloys), the maximum radial stress σmax at the center of
the contact region is:

σmax = 0·389

[
PE2

(
R − R′

RR′

)2
]1/3

, (20)

and the radius of the contact region (= a, Figure 7) can be obtained from:

a = R sin α = 1·11

[
P

E

RR′

R − R′

]1/3

, (21)
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Figure 7. The stress distribution between two spherical
surfaces.

Figure 8. The spherical socket ball joint under load F .

where: P = Fcosθ0 = the radial component of F . α = half of the maximum contact angle
between the two spheres.

However, if the materials of the two surfaces are not the same, then E in the above equation
has to be changed into 1·82E1E2/((1 − ν2

2)E1 + (1 − ν2
1)E2) as described in Section 3.1.

4.2. EQUILIBRIUM ANALYSIS

Based on the stress distribution on the spherical surface, we can obtain the equilibrium equa-
tions of forces and moments, first, by considering forces acting on an infinitesimal area, then
integrating it over the whole contact area. The components of the forces (normal and frictional
tangent forces) acting on an infinitesimal area of contact R2dφ dθ (Figure 8) are:∑ 
dF = σrR

2
[
(− cos φ sin θî + cos θ cos φĵ − sin φk̂) + µ(sin θĵ + cos θî)

]
dφ dθ. (22)

By integrating over the contact area, we may write the equilibrium equations of forces
along x, y, and moment around z-axis (Figure 6) as:

∑ 
Fx =
∫ θ0+α

θ0−α

∫ +α′

−α′

∑ 
dF · î

=
∫ θ0+α

θ0−α

∫ +α′

−α′
R2σr (µ cos θ − cos φ sin θ) dφ dθ = 0, (23)

∑ 
Fy =
∫ θ0+α

θ0−α

∫ +α′

−α′

∑ 
dF · ĵ

=
∫ θ0+α

θ0−α

∫ +α′

−α′
R2σr (cos θ cos φ + µ sin θ) dφ dθ = F, (24)
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∑ 
Mz =
∫ θ0+α

θ0−α

∫ +α′

−α′

[ 
R ×
∑ 
dF

]
· k̂ =

∫ θ0+α

θ0−α

∫ +α′

−α′
µR2σr cos φ dφ dθ = F l, (25)

where, σr = σmax

√
1 − [R

a
sin(θ − θ0)]2 − [R

a
sin φ]2, 
R = R(cos φ sin θî − cos φ cos θĵ +

sin φk̂), l = the distance between force F and y axis (Figure 8), θ0 = the angular position of
center of the contact area(Figure 8), α′ = sin−1

√
sin2 α − sin2(θ − θ0).

After expansion of the Equations (23) and (24), they are converted into elliptic integral
forms which do not have analytical solutions. However, it is possible to verify numerically
that Equation (23) leads to the same equation: tan θ0 = µ, for different values of µ and α.
Now, by knowing θ0 = tan−1 µ, it is possible to find the radial component of force F (i.e.,
P = F cos θ0), which drives the two spherical surfaces into each other radially, and is the
same as force P in Equations (20) and (21). As a result we can have:

P = F cos θ0 = F/
√

1 + µ2.

On the other hand, by multiplying Equation (20) by the square of Equation (21), we may
obtain a relation between σmax and P as:

σmax(R sin α)2 = 0·388(1·11)2

[
P 3(

E!RR

ER!R
)2

]1/3

= 0388(1·11)2P.

Replacing P = F/
√

1 + µ2 in the above equation, a relationship between F , and σmax can
be obtained without solving Equation (24) as follows:

σmax = 0·388(1·11)2

R2 sin2 α
√

1 + µ2
F. (26)

Now by substituting σmax given by (26) in the trigonometric form of Equation (19), we can
write

σr = σmax

√
1 −

[
R

a
sin(θ − θ0)

]2

−
[
R

a
sin φ

]2

= 0·388(1·11)2

R2 sin2 α
√

1 + µ2
F

√
1 −

[
R

a
sin(θ − θ0)

]2

−
[
R

a
sin φ

]2

,

which provides us with σr , which can be used in Equation (25). This makes it possible to
integrate Equation (25), and obtain:

πµ
0·388(1·11)2

R2 sin2 α
√

1 + µ2
FR3

[
cos α − α

cos 2α

sin α

]
= F l.

After simplification it leads to:

l

R
= 0·75

[
cos α

sin2 α
− α

cos 2α

sin3 α

]
µ√

1 + µ2
. (27)

Equation (27) has the same basic structure as Equation (14) in the case of revolute pin joint
(i.e., l/R = Cαµ/

√
1 + µ2). However, in this case Cα is

Cα = 0·75

[
cos α

sin2 α
− α

cos 2α

sin3 α

]
. (28)
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Figure 9. Cα vs. α for spherical-socket ball joints. Figure 10. l/R vs. µ for spherical-socket ball joints.

Cα is plotted vs. α in Figure 9, which can be interpreted as the deviation of the elastic joint (as
a more realistic assumption) from the absolute rigid joint (as an ideal-case assumption, where
Cα = 1).

Now, by use of Equation (28), the frictional moment of the spherical joint would be:

M = F × l = 3

4
F × R

[
cos α

sin2 α
− α

cos 2α

sin3 α

]
µ√

1 + µ2
, (29)

where, α can be obtained from (21) as

α = sin−1



(

1·367F

ER!R
√

1 + µ2

)1/3

 .

Similar to the previous section, l/R is the dimensionless parameter that represents the
frictional moment capacity, M, of the spherical-socket ball joint regardless of its size. Hence,
l/R of Equation (27) is plotted for different values of µ and α as shown in Figure 10. In this
plot, the curve corresponding to α = 0, represents the rigid-joint model, and, as compared to
full contact case (where α = 90◦), Equation (1) has a deviation of about 15%. This means that
Equation (1) will result in a 15% error, if used when the joint is in full contact.

5. Discussions

Based on the previous analysis, we have presented mathematical models (Equations (18), and
(29)) that can predict the frictional moment M of the joints as a function of the contact angle
α, and µ. However, to apply these models effectively, it is important to know under what range
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of loads on the joint, the value of α(and subsequently Cα, and M) is affected most. To clarify
this in more detail the following questions must be addressed and discussed:

I) In what minimal range of loads does the joint still behaves as a rigid joint (i.e., α ≈ 0 and
Cα ≈ 1)?

II) In what intermediate range of loads does the joint have partial contact as an elastic joint
(i.e., 0 < α < 90◦)?

III) In what maximal range of loads does the joint have full contact as an elastic joint (i.e.,
α = 90◦)?

In order to answer the above questions, first, we have to find the maximum load capacity
of the joint Pmax, as an upper bound limit, as well as a relative scale of comparison for other
smaller loads(as the ratio P/Pmax). The reason that P has been used here instead of the load
force F is that the radial load P(= F cos θ0) is the only contributing component of load F

which is used in the computation of σmax in Equations (4) and (20).
Let us first consider the revolute pin joints. Based on the strength of material(as the design

criteria for maximum loading of joints), the maximum radial force Pmax that can be exerted on
the joint must not induce larger stresses than the allowable stress σy/S, where σy is the yield
stress of the joint’s material and S is the safety factor of design. Therefore σmax in Equation (4)
can be replaced by σy/S in order to find the maximum value of P defined as Pmax. As a result
we have:

Pmax = 5·72b(Rσy)
2

E!RS2
. (30)

Here !R = R′ − R, and R′ � R is assumed.
On the other hand, the full contact between the two cylindrical surfaces of the joint happens

when the contact angle is 180◦ (i.e., α = 90◦, Figure 4). Here, Pf c is defined as the minimum
radial force required to cause full contact in the joint (i.e., α = 90◦). We can obtain a relation
for Pf c by substituting α = 90◦ in Equation (5), namely a = R sin(90◦) = 1·52[Pf c

Eb
RR′
!R

]1/2

and by assuming R′ � R, we have for Pf c:

Pf c ≥ Eb!R

2·31
. (31)

Now by dividing (31) by (30) and for revolute pin joints we can obtain the ratio of Pf c and
Pmax as:

1 ≥ Pf c

Pmax
≥ 0·076

[
S
!R

R

E

σy

]2

. (32)

The same can be done for spherical socket-ball joints yielding the following:

1 ≥ Pf c

Pmax
≥ 0·043

[
S
!R

R

E

σy

]3

. (33)

As an example, let us look at a steel joint with normal design parameters such as: σy =
500 MPa, E = 210 GPa, R = 10 mm, !R = 0·01 mm, and the design safety factor of
S = 2·5. Table 2 shows typical calculated values for α, Cα, and P/Pmax for the revolute and



Towards approximate models of Coulomb frictional moments 295

Table 2. The typical calculated values of Cα, α, and P/Pmax.

Type Revolute Pin Joint Spherical Socket-Ball Joint

Contact Low Partial Full Low Partial Full

Cα 1·0 – 1·01 1·01 – 1·27 1·273 = 4
π 1·0 – 1·01 1·01 – 1·17 1·178 = 3π

8
α 0 – 20 21 – 89 90 0 – 18 19 – 89 90
P

Pmax
0 – 0·01 0·01 – 0·08 0·08 – 1·0 0 – 0·001 0·001 – 0·05 0·05 – 1·0

spherical cases. In this table, low contact refers to the narrow range of α that corresponds to
the range of 1 ≤ Cα ≤ 1·01. In other words, the low contact range represents the range of
α (and the corresponding values of P/Pmax) in which Cα � 1, and the joint is still behaving
rigid under the very light load. The partial contact is defined as the range for which the contact
angle α is more than that for the low contact range, but less than full contact(that α = 90◦).

For revolute pin joints, it is apparent from the above example that, for the assumption of
rigid joint to be accurate (Cα � 1), P should not exceed 1% (and 0·1%, in the case of spherical
joints) of the maximum allowable load Pmax.

On the other hand, in the full contact columns, when the load P exceeds 8% and 5%
of Pmax, Cα is equal to 1·273, and 1·178 for revolute and spherical joints, respectively. This
is more than 90% of the range of allowable load Pmax. Therefore, assuming Cα = 1·273 (for
revolute pin joints) and 1.178 (for spherical socket ball) in the case of unknown loads(or when
P is generally larger than 5–8% of Pmax) will result in a more accurate model than when the
conventional model (2) is used.

6. Concluding remarks

In this study, the inclusion of the elastic model between the contacting bodies has resulted
in the general formulation of the Coulomb frictional moment in both revolute pin joints and
socket-ball joints. The general expression can be written as:

M = Cα

F × R × µ√
1 + µ2

,

where the value of Cα can generally be determined for the following three cases:

Case 1: For low contact angles (e.g., α ≤ 20◦), then Cα � 1. This corresponds to very light
loads (e.g., about or less than 1% of joints allowable loads, Table 2) for which the joints
still acts as a rigid body.

Case 2: For partial contact (e.g., 20◦ < α ≤ 90◦) Cα can be calculated by the closed form
Equations (17), and (28) for the two cases.

Case 3: For full contact (that α = 90◦) Cα is equal to 1·273(= 4/π), and 1·178(= 3π/8) for
revolute and spherical joints, respectively.

Case 3 is the dominant case for joints operation (more than 90% of the designed load
range) that could be used for general estimations when the exact magnitude of load P , or
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contact angle α are unknown, but the loads are high enough to cause full contact or near full
contact (e.g., P/Pmax > 0·08, Table 2).

In comparison with the conventional friction model (where Cα = 1), the new model with
a value of Cα obtained according to case 2 or 3 can prevent up to 21% and 15% error in
the Coulomb frictional-moment estimation of pin and socket-ball joints, respectively. This
higher accuracy is especially important for better control, and dynamic modeling of multi-
body systems with several joints in series(with accumulative error. One of such case is the
estimation of the frictional moments in the endoscopic flexible stems for locking and motion
control of the extenders.
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